Introduction to
Free Energy
Simulations




Molecular Modeling Softwares & Databases:

Molecular Mechanical Tools (Classical Minimization and MD):
* https://en.wikipedia.org/wiki/Comparison of software for molecular mechanics modeling

Quantum Mechanical Tools (QM Geom Opt and QM-MD):

* https://en.wikipedia.org/wiki/List of quantum chemistry and solid-state physics software

Drug Design Tools:
* https://www.click2drug.org/directory Docking.html

Molecular Databases:
* https://en.wikipedia.org/wiki/List of biological databases
* (PDB, Chemspyder, PubChem - some good ones)

Building Molecules & Basic Minimization:
* Avogadro (https://sourceforge.net/projects/avogadro/), lgmol (http://igmol.org)

Visualization Softwares:
e VMD (http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD)
* Pymol (https://sourceforge.net/projects/pymol/)

CHARMM Tutorial:
* https://www.charmmtutorial.org/index.php/CHARMM _Tutorial


https://en.wikipedia.org/wiki/Comparison_of_software_for_molecular_mechanics_modeling
https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software
https://www.click2drug.org/directory_Docking.html
https://en.wikipedia.org/wiki/List_of_biological_databases
http://iqmol.org)/
http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD)
https://sourceforge.net/projects/pymol/)

Preface: The “Ergodic
Hypothesis” and its implications!
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3.011e20 molecules AA

Energetic properties of this solution will be dependent on:

* Intramolecular interactions (dependent on molecular
CONFORMATIONS!!)

* Intermolecular interactions (charge-charge/electrostatics,
and vdW)

 Temperature (temperature makes the world go-round)



* Intramolecular interactions (dependent on molecular
CONFORMATIONS!!)

* Intermolecular interactions (charge-charge/electrostatics,
and vdW)

 Temperature (temperature makes the world go-round)

How in the HALIBUT do we simulate 3.011e20 molecules of anything?!?!






1. Try to generate each of the
AA configurations randomly
and separately?!
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2. Generate one
configuration, then allow it to
move (dynamics) in space and

time and “hope” that it
samples all configurations!!




“Ergodicity”
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Ergodic Hypothesis states, for many natural systems of interest, averages of the system over
time (2) are equal to an "ensemble average” (1).
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Lo — o Dynamical Simulations = Sample molecular “shapes”
(conformations) vy applying force over time Which determine

energetic profiles = better understanding of all 3.011e20
AA molecules in solution!!




Ergodic Hypothesis states, for many natural systems of interest, averages of the system over
time (2) are equal to an "ensemble average” (1).

o —
g o7 Dynamical Simulations = Sample molecular "shapes”
| (conformations) by applying force over time Which determine

energetic profiles = better understanding of all 3.011e20
AA molecules in solution!!

F=m*a

. So long simulations may be needed to properly describe a system!!

F=m%*a



Do we really need 3.011e20 frames of AA
trajectory to sufficiently describe the system?!




Not really...

 Have 3.011e20 molecules but many have
similar conformations

 Populations of most degrees of freedom
take a Gaussian distribution

e« ~10°-10"energy evaluations (frames)
needed for AA! - still a LOT!!

Do we really need 3.011e20 frames of AA
trajectory to sufficiently describe the system?!

(Gaussian or
"normal"
distribution
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Background to Classical Free
Energy Simulations!
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How to calculate free energies from
simulation?

/wanzig’s Equation (aka Free Energy Perturbation):

O = gas phase butane
1 = implicit solvent butane
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Zwanzig, R. W., J. Chem. Phys. 1954, 22, 1420-1426



How to calculate free energies from
simulation?

Bennett’s Acceptance Ratio (BAR)

O = gas phase butane
1 = implicit solvent butane
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“No plan survives first contact

with implementation.”
-Andy Weir, “The Martian”



But wait! It's not always that easy!

CHALLENGES

Gas =2 Explicit Solvent: overlaps with waters

—> catastrophic clashes =

* Gas =2 Implicit, likely done in 1 step, not explicit
solvent

FEPFW
FEPBW

0.16
|

Complicated transformations: likely low
“overlap” between endstates 0 and 1

* “overlap” = conformation found in state O is likely _
to exist in state 1, and vice versa

* when there overlap is low, potential energy

Density
0.08
I

0.00

surfaces are too dissimilar and the centra ! !
assumption of FEP is violated -18580 -18560 -18540 -18520

AU [kcal/mol]

MM treatment not appropriate for reaction (a) AU Histograms

paths, or some other transformations



But wait! It's not always that easy!

CHALLENGES

SOLUTIONS:

Gas =2 Explicit Solvent: overlaps with waters
—> catastrophic clashes

* Gas =2 Implicit, likely done in 1 step, not explicit
solvent

Complicated transformations: likely low
“overlap” between endstates 0 and 1

* “overlap” = conformation found in state O is likely
to exist in state 1, and vice versa

* when there overlap is low, potential energy
surfaces are too dissimilar and the centra
assumption of FEP is violated

MM treatment not appropriate for reaction
paths, or some other transformations

Generally easier to make atoms disappear
than appear...

Gradual shift from state O and 1 (intermediate
states) improves overlap between steps...

Alchemical Free Energy Simulations: use of
non-physical “lambda” states (intermediates)
to shift from starting state (0) to ending state

(1)

QM/MM Free Energy Simulations!



Alchemical Free Energy Simulations:
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Alchemical Free Energy Simulations:
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