Variational Principle
Applied to Diatomics
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Simplify for purposes of example

Consider diatomic molecule, limit sum to 2 terms, and simplify the notation:
Y =cqPy+cpyPp=cyA+cpB

where (A) and (B) indicate wavefunctions centered on nuclei A and B

9 _0 and 2E =0

dcy dcp

We will assume that A and B are real AOs (e.g. 1s orbitals) for our example (just
to keep the notation simple). The results, though, generalize to complex AOs.



Expand Normalization Integral
jl/)*l,/)d’[ = f(cAA + cgB) - (c4A + cgB)drt
= ¢ [ A%dt + ¢ [ B%dt + 2c4cp [ ABdT
=cf + c5 + 2cycpS

Note: S is the overlap integral



Expand Hamiltonian Integral

ft/)*ﬁl/)dr = f(cAA + cgB) H(c A + cgB)dr
= cjjAﬁAdT+c§jBﬁBdT+ CACBJAﬁBdT+ cAchBﬁAdT
=ciHyy + c5Hpg + 2c4cpHyp

= cia, + ciag + 2c cpf

Notes:

« His called the Hamiltonian matrix and its elements are Haa Hgg €tc; Hug=Hg, by
Hermiticity.

* An alternative nomenclature is: oty,=H,,, o.g=Hpgg, B=H g

* a, and H,, are called Coulomb integrals

* Band H,z are called Exchange integrals



Put it together and take derivatives

204 + caag + 2c4c58

ci + ¢+ 2cy4cpS

E

ciay + chag + 2cacpf

(ca + c§ + 2¢4¢gS)

oE 2C 00 + 2C
- 4 ;4 BIB — (ZCA +2CBS)
dcy, ¢4 +cp + 2¢4cS

= - [(ay — E)cy + (B — ES)cg] = 0

catci+2cycpS

Thus: (aA — E)CA + (ﬁ — ES)CB =0

Same reasoning for :TE yields: (8 — ES)cy + (ag — E)cg =0
B



Rewrite as matrix equation
(gA—_Sg sz_—Sg) (ﬁﬁ) - (8)

* Need to solve simultaneously for E, c,, and cg

* There will be 2 possible values of E. Each corresponds to a different pair of values
for c, and cg.



Solving for E, ¢, and ¢,

The only solutions, other than the trivial solutionc, = cg = 0, are
when the secular determinant is zero:

ﬁ — SE Ap — E B
Which becomes: (a, — E)(ag —E) — (B —SE)* =0

There will be two solutions for E (E, and E_) because the equation is
quadratic.



The expressions are complicated in general, but for homonuclear diatomics, o, = a; and the
expressions simplify to:

E. = Ul and E_ =
1+S 1-5

This looks quite different from our earlier expressions for E{, and E

_ Jo Jtk _ J j—k
Ela_E15+E__1+S and EZO'_EIS+

Ny

R 1-

95}

But actually, they are equivalent when A =B =1, (good homework problem?).



Determining ¢, and ¢,

Once E, and E_ are known, each can be substituted for E in the original equations, which
can then be solved for ¢, and c;. Note that E, and E_ each give their own values of ¢,
and cg.

(g —E)cy+(B—SE)cg =0

(B—SE)cy+ (ap — E)cg =0

Remembering that for homonuclear diatomics, a, = q;, little algebra using either equation
above shows:

FOTE:E+: Cp — Cp

To solve for ¢, explicitly, we need to make use of the normalization condition:

1

J2(1+S)

¢4 + ¢} +2c,cpS = 1 from which we find: ¢, = ¢, =



Likewise, for

E=F_: Cqp — —Cp =

Vv2(1-5)

Also just as we found before!



Heteronuclear diatomics

Expressions for £, and E_ more complicated than for homonuclear
diatomics. Expressions obtained using a simplifying approximation are

given in the text. Two important points:

* E_ is closer to energy of lower-energy AO; E_ is closer to energy of
higher-energy AO.

* Y, contains greater contribution lower-energy AO; 1 _ contains
greater contribution from higher-energy AO



CHAPTER 10: FIGURE 10D.3

lonization limit

A A

7.2 eV
6.9 eV

eV

10.7

A

2

H1ls <

0.28y, + 0.961;

Figure 10D.3 The estimated energies of the atomic orbitals

lo

10.4 eV

\0.967, - 0.287,

= F2p

in HF and the molecular orbitals they form.

PHYSICAL CHEMISTRY: THERMODYNAMICS, STRUCTURE, AND CHANGE 10E | PETER ATKINS | JULIO DE PAULA

©2014 BE W. H. FREEMAN AND COMPANY



Generalizing method with matrix notation (not

required)
Begin with the equations: And rewrite them in H,, H,p etc. notation:
(g — E)cy + (B —ES)cp=0 (Hgg — E)cy + (Hyp — ES)cp =0
(B—ES)cy+ (ap —E)cp=0 (Hgy — ES)cy + (Hgp — E)cp =0

This can be re-written in matrix format:

(e B BN () = ()



Repeating:
_ — C
(g5 ey £) (ea) = (0)

This can be rewritten:

(o) g (5 ) () =(§)

, Hamiltonian matrix: H ~
This can be rearranged: / Overlap matrix: S

Gt 1) () = (s D(ep)

Vector: ¢



The matrix equation can be rewritten compactly:
Hc = ESc

Kind of eigenvalue equation, because it can be rewritten as M¢ = Ec where M = §1

o

 Matrix M is like an operator
* Vector C is like an eigenfunction
e Scalar E is like an eigenvalue

There will be as many solutions E;, ¢; as there are rows and columns in the matrices. All of these
can be combined by defining a matrix ¢ whose columns are each of the vectors ¢; and another
matrix, E , whose diagonal elements are the scalars E; (all other elements are zero):

(0 E,)
0 E,

The new equation i1s:

=
all
|

i
all
i



Rearrange matrix equation

Ht = SCE
Multiply from the left by S~1
S™'Hc = S7IS¢E =CE
Multiply from the left by ¢!
c15-1H = ¢ 17E =



Thus, by finding matrix inverses and multiplying by them, we have:

C~IST'HC =E

The important things to recognize:
. H and S are created from the Hamiltonian and the AOs (all known).

 Eand € are the unknowns we need to solve for.

Note:
e E is a diagonal matrix (has nonzero entries only along the diagonal).

* Finding the matrix ¢ that “diagonalizes” S S™1H {this product is itself a

matrix (1\71 from earlier slide)} is called “diagonalizing.”
* Finding the inverse of a matrix and diagonalizing a matrix are

operations that computers are great at.



Why did we go through all this math if the results are the
same as we got earlier with our simpler approach?

Earlier, we assumed that cp = ¢4 for a homonuclear diatomic bonding orbital. Now we have proven it.

The earlier approach only applied to homonuclear diatomics. Now we can handle heteronuclear
diatomics, too.

The new approach, based on the variational principle, can be generalized to
* more than 2 AOs in the sum for a given MO
* larger molecules.

We will use a simplified form of this approach for polyatomics in the next section.

—> The variational principle is the foundation for most computer approaches for calculating the electronic
structures of molecules.





