Variational Principle

Applied to Diatomics

Variational Principle

denominator is just to allow use of an unnormalized ψ (for convenience)

Essential equations for applying the Variational Principle

may be unnormalized

$$E = \frac{\int \psi^* \widehat{H} \psi d\tau}{\int \psi^* \psi d\tau}$$

MO

$$\psi = \sum c_i \psi_{AO_i} \qquad \text{(LCAO-MO)}$$

$$\frac{\partial E}{\partial c_i} = 0$$

Simplify for purposes of example

Consider diatomic molecule, limit sum to 2 terms, and simplify the notation:

$$\psi = c_A \psi_A + c_B \psi_B = c_A A + c_B B$$

where (A) and (B) indicate wavefunctions centered on nuclei A and B

$$\frac{\partial E}{\partial c_A} = \mathbf{0}$$
 and $\frac{\partial E}{\partial c_B} = \mathbf{0}$

We will assume that A and B are real AOs (e.g. 1s orbitals) for our example (just to keep the notation simple). The results, though, generalize to complex AOs.

Expand Normalization Integral

$$\int \psi^* \psi d\tau = \int (c_A A + c_B B) \cdot (c_A A + c_B B) d\tau$$
$$= c_A^2 \int A^2 d\tau + c_B^2 \int B^2 d\tau + 2c_A c_B \int AB d\tau$$
$$= c_A^2 + c_B^2 + 2c_A c_B S$$

Note: S is the overlap integral

Expand Hamiltonian Integral

$$\int \psi^* \widehat{H} \psi d\tau = \int (c_A A + c_B B) \, \widehat{H}(c_A A + c_B B) d\tau$$

$$= c_A^2 \int A \widehat{H} A d\tau + c_B^2 \int B \widehat{H} B d\tau + c_A c_B \int A \widehat{H} B d\tau + c_A c_B \int B \widehat{H} A d\tau$$

$$= c_A^2 H_{AA} + c_B^2 H_{BB} + 2c_A c_B H_{AB}$$

$$= c_A^2 \alpha_A + c_B^2 \alpha_B + 2c_A c_B \beta$$

Notes:

- $\overline{\overline{H}}$ is called the Hamiltonian matrix and its elements are H_{AA} , H_{BB} etc; $H_{AB}=H_{BA}$ by Hermiticity.
- An alternative nomenclature is: $\alpha_A = H_{AA}$, $\alpha_B = H_{BB}$, $\beta = H_{AB}$
- α_A and H_{AA} are called Coulomb integrals
- β and H_{AB} are called Exchange integrals

Put it together and take derivatives

$$E = \frac{c_A^2 \alpha_A + c_B^2 \alpha_B + 2c_A c_B \beta}{c_A^2 + c_B^2 + 2c_A c_B S}$$

$$\frac{\partial E}{\partial c_A} = \frac{2c_A \alpha_A + 2c_B \beta}{c_A^2 + c_B^2 + 2c_A c_B S} - (2c_A + 2c_B S) \frac{c_A^2 \alpha_A + c_B^2 \alpha_B + 2c_A c_B \beta}{(c_A^2 + c_B^2 + 2c_A c_B S)^2}$$

$$= \frac{2}{c_A^2 + c_B^2 + 2c_A c_B S} [(\alpha_A - E)c_A + (\beta - ES)c_B] = 0$$

Thus:
$$(\alpha_A - E)c_A + (\beta - ES)c_B = 0$$

Same reasoning for $\frac{\partial E}{\partial c_B}$ yields: $(\beta - ES)c_A + (\alpha_B - E)c_B = 0$

Rewrite as matrix equation

$$\begin{pmatrix} \alpha_A - E & \beta - SE \\ \beta - SE & \alpha_B - E \end{pmatrix} \begin{pmatrix} c_A \\ c_B \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- Need to solve simultaneously for E, c_A, and c_B
- There will be 2 possible values of E. Each corresponds to a different pair of values for c_{Δ} and c_{B} .

Solving for E, c_A and c_B

The only solutions, other than the trivial solution $c_A = c_B = 0$, are when the secular determinant is zero:

$$\begin{vmatrix} \alpha_A - E & \beta - SE \\ \beta - SE & \alpha_B - E \end{vmatrix} = 0$$

Which becomes: $(\alpha_A - E)(\alpha_B - E) - (\beta - SE)^2 = 0$

There will be two solutions for E (E_+ and E_-) because the equation is quadratic.

The expressions are complicated in general, but for homonuclear diatomics, $\alpha_A = \alpha_B$ and the expressions simplify to:

$$E_+ = rac{lpha_A + eta}{1 + S}$$
 and $E_- = rac{lpha_A - eta}{1 - S}$

This looks quite different from our earlier expressions for $E_{1\sigma}$ and $E_{2\sigma}$

$$E_{1\sigma} = E_{1s} + \frac{j_o}{R} - \frac{j+k}{1+S}$$
 and $E_{2\sigma} = E_{1s} + \frac{j_o}{R} - \frac{j-k}{1-S}$

But actually, they are equivalent when A = B = ψ_{1s} (good homework problem?).

Determining c_A and c_B

Once E_+ and E_- are known, each can be substituted for E in the original equations, which can then be solved for c_A and c_B . Note that E_+ and E_- each give their own values of c_A and c_B .

$$(\alpha_A - E)c_A + (\beta - SE)c_B = 0$$

$$(\beta - SE)c_A + (\alpha_B - E)c_B = 0$$

Remembering that for homonuclear diatomics, $\alpha_A = \alpha_B$, little algebra using either equation above shows:

For
$$E = E_+$$
: $c_A = c_B$

To solve for c_A explicitly, we need to make use of the normalization condition:

$$c_A^2 + c_B^2 + 2c_Ac_BS = 1$$
 from which we find: $c_A = c_B = \frac{1}{\sqrt{2(1+S)}}$

Likewise, for

$$E = E_{-}$$
: $c_A = -c_B = \frac{1}{\sqrt{2(1-S)}}$

Also just as we found before!

Heteronuclear diatomics

Expressions for E_+ and E_- more complicated than for homonuclear diatomics. Expressions obtained using a simplifying approximation are given in the text. Two important points:

- E_+ is closer to energy of lower-energy AO; E_- is closer to energy of higher-energy AO.
- ψ_+ contains greater contribution lower-energy AO; ψ_- contains greater contribution from higher-energy AO

Figure 10D.3 The estimated energies of the atomic orbitals in HF and the molecular orbitals they form.

Generalizing method with matrix notation (not required)

Begin with the equations:

And rewrite them in H_{AA} , H_{AB} etc. notation:

$$(\alpha_A - E)c_A + (\beta - ES)c_B = 0$$
 $(H_{AA} - E)c_A + (H_{AB} - ES)c_B = 0$ $(\beta - ES)c_A + (\alpha_B - E)c_B = 0$ $(H_{BA} - ES)c_A + (H_{BB} - E)c_B = 0$

This can be re-written in matrix format:

$$\begin{pmatrix} H_{AA} - E & H_{AB} - ES \\ H_{BA} - ES & H_{BB} - E \end{pmatrix} \begin{pmatrix} c_A \\ c_B \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Repeating:

$$\begin{pmatrix} H_{AA} - E & H_{AB} - ES \\ H_{BA} - ES & H_{BB} - E \end{pmatrix} \begin{pmatrix} c_A \\ c_B \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This can be rewritten:

$$\begin{pmatrix} \begin{pmatrix} H_{AA} & H_{AB} \\ H_{BA} & H_{BB} \end{pmatrix} - E \begin{pmatrix} \mathbf{1} & S \\ S & \mathbf{1} \end{pmatrix} \begin{pmatrix} c_A \\ c_B \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

This can be rearranged:

rranged: Hamiltonian matrix:
$$\overline{\overline{H}}$$
 Overlap matrix: $\overline{\overline{S}}$
$$\begin{pmatrix} H_{AA} & H_{AB} \\ H_{BA} & H_{BB} \end{pmatrix} \begin{pmatrix} c_A \\ c_B \end{pmatrix} = E \begin{pmatrix} 1 & S \\ S & 1 \end{pmatrix} \begin{pmatrix} c_A \\ c_B \end{pmatrix}$$
 Vector: \overline{c}

The matrix equation can be rewritten compactly:

$$\overline{\overline{H}}\overline{c} = E\overline{\overline{S}}\overline{c}$$

Kind of eigenvalue equation, because it can be rewritten as $\overline{\overline{M}}\overline{c}=E\overline{c}$ where $\overline{\overline{M}}=\overline{\overline{S}}^{-1}\overline{\overline{H}}$.

- Matrix $\overline{\overline{M}}$ is like an operator
- Vector \bar{c} is like an eigenfunction
- Scalar *E* is like an eigenvalue

There will be as many solutions E_i , \bar{c}_i as there are rows and columns in the matrices. All of these can be combined by defining a matrix $\bar{\bar{c}}$ whose columns are each of the vectors \bar{c}_i and another matrix, $\bar{\bar{E}}$, whose diagonal elements are the scalars E_i (all other elements are zero):

$$\begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix}$$

The new equation is:

$$\overline{\overline{H}}\overline{\overline{c}} = \overline{\overline{S}}\overline{\overline{c}}\overline{\overline{E}}$$

Rearrange matrix equation

$$\overline{\overline{H}}\overline{\overline{c}} = \overline{\overline{S}}\overline{\overline{c}}\overline{\overline{E}}$$

Multiply from the left by \overline{S}^{-1}

$$\overline{\overline{S}}^{-1}\overline{\overline{H}}\overline{\overline{c}} = \overline{\overline{S}}^{-1}\overline{\overline{S}}\overline{\overline{c}}\overline{\overline{E}} = \overline{\overline{c}}\overline{\overline{E}}$$

Multiply from the left by \overline{c}^{-1}

$$\overline{\overline{c}}^{-1}\overline{\overline{S}}^{-1}\overline{\overline{H}}\overline{\overline{c}} = \overline{\overline{c}}^{-1}\overline{\overline{c}}\overline{\overline{E}} = \overline{\overline{E}}$$

Thus, by finding matrix inverses and multiplying by them, we have:

$$\bar{\bar{c}}^{-1}\bar{\bar{S}}^{-1}\bar{\bar{H}}\bar{\bar{c}}=\bar{\bar{E}}$$

The important things to recognize:

- $\overline{\overline{H}}$ and $\overline{\overline{S}}$ are created from the Hamiltonian and the AOs (all known).
- $\bar{\bar{E}}$ and $\bar{\bar{c}}$ are the unknowns we need to solve for.

Note:

- $ar{E}$ is a diagonal matrix (has nonzero entries only along the diagonal).
- Finding the matrix \bar{c} that "diagonalizes" $\bar{S}^{-1}\bar{H}$ {this product is itself a matrix (\bar{M} from earlier slide)} is called "diagonalizing."
- Finding the inverse of a matrix and diagonalizing a matrix are operations that computers are great at.

Why did we go through all this math if the results are the same as we got earlier with our simpler approach?

- Earlier, we assumed that $c_B = c_A$ for a homonuclear diatomic bonding orbital. Now we have proven it.
- The earlier approach only applied to homonuclear diatomics. Now we can handle heteronuclear diatomics, too.
- The new approach, based on the variational principle, can be generalized to
 - more than 2 AOs in the sum for a given MO
 - larger molecules.
- We will use a simplified form of this approach for polyatomics in the next section.
- → The variational principle is the foundation for most computer approaches for calculating the electronic structures of molecules.