Solutions, Practice Problems for Exam 1, CHM 3411

1. A photon of wavelength 465 nm encountering the surface of an unknown metal ejects
an electron with a kinetic energy of 3.252 x 1077 J.

(a) What is the minimum frequency of radiation required to eject an electron from the
metal surface?
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(b) What about this is contradictory to classical expectation?
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2. For a particular diatomic molecule, absorption of light of wavelength 4292 nm causes a
transition from the ground vibrational state (v=0) to the first excited vibrational state
(v=1). Compute the zero-point energy for vibration of the molecule.
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3. Cofisider the potential energy function sketched below. Two particular €nergy levels

for consideration are labeled E; and E,. The potential energy is infinite for x < 0 and
x>L.

(a) On the figure above, sketch the wave functions for particles with energies E; and E,.
No calculations are needed, but the wave functions should qualitatively show the
important features. [The finely dashed lines at E; and E, are drawn for your
convenience; offset the wave functions so that each is zero along the corresponding

finely dashed line.]
(b) Define three regions (ranges of x), and give the Schrodinger equation for each region. T
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(c) What boundary conditions are needed to obtain specific solutions to the Schrédinger

equation for a particle confined to this “box” (i.e., the potential energy function
sketched)?
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(d) Discuss the concept of tunneling and how it relates to the wave functions you drew in \3

part (a). Be sure to identify any tunneling regions for a particle with energy E; or J
energy E,.



i, Consider a particle of mass # in a box of lenpth L = 1 (neglecting units) which is ina

state that is a superposition of sine functions:
p(x) = ¢ (x)+cyy (x)

where ¢; and ¢; are constants, and ¢;(x) and @y(x) are orthonormal functions (over (1

interval ¢ < x < 1) defined by;

(X)) = V2 sin(v)
Py (x) = V2 sin{27mx)

(a} Show that ¢;(x) and ¢x) are eigenfunctions of the kmu;c energy operature, }; but
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(b) The constants ¢; and ¢; must satisfy a relationship in order for required y4xJj to be

normalized. Determine this relationship.  Hint: recatling that ¢;{x} and ¢a(x) are

orthonormal will saye some work.
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(L) What is the C\pc;tatloﬂ value of T (m terms of m)? &

(E‘Qﬁjéf fa'.%,_ f(a o, )1 TN A ) Lo

&, 4. < 7‘/ i
- ( S '(9’ & de + L/Lclm)jﬁl 2 e
L;m )

(d) Suppose a singie measurement of the kinetic energy, [,is nﬁd@?"’@ﬂW

values can be oblained (your answer should be in term$ of m)?
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