Selected Applications of Chemical Equilibrium to Biochemistry: Ligand Binding, Bioenergetics Chang, Sections 6.4-6.5	
Distancias Chandrad Chaha	
Biological Standard State	
Discussed on whiteboard	
	1
Binding of ligands and metal ions to	
macromolecules:	
A. One binding site per macromolecule	
Myoglobin: 1 binding site for O ₂	

Binding equilibrium

$$\mathrm{P} + \mathrm{L} \, \Rightarrow \, \mathrm{PL} \qquad K_a = \frac{a_{\mathrm{PL}}}{a_{\mathrm{P}} a_{\mathrm{L}}} \cong \frac{[\mathrm{PL}]}{[\mathrm{P}][\mathrm{L}]}$$

$$PL \rightarrow P + L$$
 $K_d \cong \frac{[P][L]}{[PL]}$

Dissociation Constant

Determining K_d

Define:
$$Y = \frac{[PL]}{[P] + [PL]}$$

↓ algebra

$$\frac{Y}{[L]} = \frac{1}{K_d} - \frac{Y}{K_d}$$

 $Slope = -\frac{1}{K_d}$

Obtain K_d by plotting Y/[L] vs Y: slope = $-1/K_d$

B. *n* equivalent binding sites

Hemoglobin: 4 binding sites for O₂ Caveat: Hemoglobin's bind sites not really equivalent

2 equivalent sites

$$P + L \rightarrow PL$$
 $K_1 = \frac{[P][L]}{[PL]}$

$$PL+L \rightarrow PL_2$$
 $K_2 = \frac{[PL][L]}{[PL_2]}$

Express K_1 in terms of K

K = dissociation constant from any one site $K = 2K_1$

Y in terms of [L] and K

$$Y = \frac{[PL] + 2[PL_2]}{[P] + [PL] + [PL_2]} = \dots = \frac{2[L]}{[L] + K}$$

Generalize to *n* equivalent sites

$$K_i = \left(\frac{i}{n-i+1}\right)K$$

$$Y = \frac{n[L]}{[L] + K}$$

Determining *n* and *K*: Plotting method 1 (Direct plot)

$$Y = n$$

$$Y = \frac{n}{2}$$

$$Y = \frac{n}{2}$$

$$[L] = K$$

$$[L]$$

Plotting method 2 (double reciprocal plot)

Plotting method 3 (Scatchard plot)

$$\frac{Y}{[L]} = \frac{n}{K} - \frac{Y}{K}$$

n non-equivalent sites

Possible but harder → for the expert

We won't cover

Bioenergetics

OVERVIEW

- Reactions must be exergonic ($\Delta_{\rm r}G$ < 0) to be spontaneous.
- Building a protein (and many other biomolecules) is highly endergonic.
- Must be coupled with other reactions that are highly exergonic, to give a net reaction that is also exergonic.
- Chemical reactions in biological systems are made efficient (rates are increased) by catalysis.

Coupled reactions

- 1. Outline effect of stoichiometry and summer reactions on board.
- 2. Question: How make the following reaction extraction of copper from ore "go"?

 $Cu_2S(s) \rightarrow 2Cu(s) + S(s)$ $\Delta_rG^o = 86.2 \text{ kJ/mol}$

Couple reactions (cont'd)

Answer: Couple to an exergonic reaction.

 $Cu_2S(s) \rightarrow 2Cu(s) + S(s)$ $S(s) + O_2(g) \rightarrow SO_2(g)$

$$\begin{split} &\Delta_{\rm r} G^{\rm o} = 86.2 \text{ kJ/mol} \\ &\Delta_{\rm r} G^{\rm o} = -300.1 \quad .. \end{split}$$

 $Cu_2S(s) + O_2(g) \rightarrow SO_2(g)$ $\Delta_rG^o = -213.9$..

ATP, ADP (adenosine triphosphate)

ATP → ADP

ATP⁴⁻ + H₂O → ADP³⁻ + H⁺ + HPO₄²⁻

or (biochemist's shorthand)

 $ATP + H_2O \rightarrow ADP + P_i$

 $\Delta_{\rm r}G^{\rm of}$ = -30.5 kJ/mol (pH=7, T=310 K)

Exergonic → Can be coupled with endergonic reactions to drive them

Efficiency of glycolytic pathway (aerobic)

Combustion of glucose:

 ${\rm C_6H_{12}O_6+6O_2(\it g)} \to {\rm 6CO_2(\it g)} + {\rm 6~H_2O(\it I)} \qquad \Delta_{\rm r}G^{\rm o} = {\rm -2879~kJ/mol}$

 $\mathsf{ADP^{3\text{-}}} + \mathsf{H^{+}} \, \mathsf{HPO_4^{2\text{-}}} \boldsymbol{\rightarrow} \, \mathsf{ATP^{4\text{-}}} + \mathsf{H_2O} \qquad \qquad \Delta_{\mathsf{r}} G^{\mathsf{of}} = 30.5 \; \mathsf{kJ/mol}$

Efficiency = $(38 \times 30.5 / 2879) = 40 \%$

Energetics of building proteins ATP Protein Amino acids