Exam 2 Practice Problems (solutions will be posted later)

1. (a) Determine the boiling point of methanol in a rotovap in which the pressure is 0.500 bar. Given: The standard boiling point of methanol (i.e. T_{b} at $\mathrm{p}=1 \mathrm{bar}$) is 337.2 K , and $\Delta_{\text {vap }} \mathrm{H}^{0}=$ $35.27 \mathrm{~kJ} \mathrm{~mol}^{-1}$. (You may treat $\Delta_{\text {vap }} \mathrm{H}^{0}=35.27$ as constant.)
(b) What equation did you use to solve (a), and what approximations are inherent in the equation?
2. (a) Consider a rigid container as sketched below. It is divided into two sections of equal volume by a partition. Initially, there is $2 \mathrm{~mol} \mathrm{O}_{2}$ on one side at 2 bar pressure, $2 \mathrm{~mol} \mathrm{~N}_{2}$ on the other side also at 2 bar pressure. At a particular time, the partition is removed. Calculate $\Delta \mathrm{S}$, the change in entropy after the partition is removed. You may treat the gases as perfect.

$2 \mathrm{~mol} \mathrm{O}_{2}$	$2 \mathrm{~mol} \mathrm{~N}_{2}$
$p=2 \mathrm{bar}$	$\mathrm{p}=2 \mathrm{bar}$

(b) Consider a rigid container as sketched below. It is divided into two sections of equal volume by a partition. Initially, there is 1 $\mathrm{mol} \mathrm{O}_{2}$ on one side at 1 bar pressure, and a mixture of $1 \mathrm{~mol} \mathrm{O}_{2}$ and $2 \mathrm{~mol} \mathrm{~N}_{2}$ on the other side at 3 bar pressure. At a particular time, the partition is removed. Calculate $\Delta \mathrm{S}$, the change in entropy after the partition is removed. You may treat the gases as perfect. Hint: construct a cycle, that is, a series of fictitious steps.

$1 \mathrm{~mol} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{O}_{2}+$ $2 \mathrm{~mol} \mathrm{~N}_{2}$ $\mathrm{p}=1 \mathrm{bar}$
$\mathrm{p}=3 \mathrm{bar}$	

